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Abstract—Applications such as Google Street View allow users
to experience the atmosphere of a place without physically
being there. However, one issue with the applications is that the
displayed images are still images, which lack a sense of presence
when users see them in VR. In this study, we propose a method
to enhance the sense of presence by focusing on sky and water
areas in an omnidirectional still image and reproducing their
motion for video generation.

Index Terms—Omnidirectional Image, Video Generation, Mo-
tion Reproduction

I. INTRODUCTION

Applications using omnidirectional images such as Google
Street View allow users to view the scenery of a location with-
out actually going there. However, such applications present
static images, lacking a sense of presence. Although one of
the solutions to the problem is to capture a video from a fixed
point, it requires a significant amount of time to capture scenes
of all over the world. In this study, we propose a method to
generate an omnidirectional video in which the motion of sky
and water is reproduced.

Conventional methods for generating videos from a still
image can be classified into two types: those that focus on
non-fluid objects such as cars and people [1] and those that
focus on fluid objects such as fire and water [2], [3]. This study
focuses on the latter methods. Among the methods, Endo et
al., for example, use neural networks to reproduce the motion
of the sky and rivers from a single landscape image. Since the
method uses perspective projection images as training data, the
resulting image obtained by applying it to an omnidirectional
image may contain unnatural motion. In addition, the method
is highly dependent on parameters and may generate motion
even in areas that are originally stationary.

We reproduce natural motion in an omnidirectional image
by the combination of optical flow calculation, which consid-
ers the motion in a 3D space rather than neural networks, and
inpainting, which estimates sky and water textures of the entire
hemisphere. In addition, we use semantic segmentation [4] to
clearly distinguish between moving and stationary areas.

II. PROPOSED METHOD

The flow of the proposed method is as follows. (1) We first
input an omnidirectional still image, and (2) apply semantic
segmentation to it to create the mask image. (3) We then create

Fig. 1. Example of input image.

the texture of the entire sky by inpainting. (4) We compute
the motion of sky and water surface, and create an image
sequence frame by frame from the inpainted image. (5) We
finally generate a video in which only the sky and the water
surface move by combining the image sequence with the input
image. We desrcibe the details in the following.

First, (1) we input an omnidirectional landscape image
containing either sky or water, as shown in Fig. 1(a). This
study assumes that omnidirectional images are generated by
equirectangular projection so that the bottom pixel is in the
direction of gravity obtained from the accelerometer in the
camera. Next, (2) we apply the semantic segmentation [4] to
the image to divide it into regions such as sky, water surface,
and others as shown in Fig. 1(b). From the segmented image,
we generate a mask image that mask all objects above the
horizon except the sky area, as shown in Fig. 1(c). Here, due to
inaccuracies near the boundaries of the semantic segmentation,
the mask regions are expanded to fully include objects except
the sky area. Next, (3) using the generated mask image, we
generate an image in which all areas above the horizon have
sky textures by inpainting [5], as shown in Fig. 1(d).

Next, (4) we calculate the motion of sky and water surface.
For the sky motion, we use the assumption that the clouds
in the sky move straight on the plane above in 3D space,
and represent their 3D motion as a 2D optical flow on the
omnidirectional image. Specifically, as shown in Fig. 2, the
relationship between a pixel (p1,q1) in the omnidirectional



Fig. 2. 3D positional relationship between the sphere and the sky plane.

image and its corresponding position (x, y, z) on the plane
above is calculated from the line passing through the center
of the sphere and the intersection of the sphere and the plane.
Next, a certain distance u and v are added to the x and
y coordinates on the plane. By projecting the coordinates
(x + u, y + v, z) onto the sphere, the corresponding pixel
(p2,q2) is calculated. The difference between pixel (p2, q2) and
pixel (p1, q1) is represented as the optical flow (fx, fy). By
copying the pixel values of the input image using the optical
flow obtained while increasing u and v linearly, we generate a
frame sequence in which the sky moves. For the water surface,
the motion is also generated in the same way by preparing a
plane representing the water surface under the sphere.

(5) We finally combine the video generated in (4) with the
input image using the mask image as shown in Fig. 1(c) to
generate a video in which only the sky and water surface
move. Here, alpha blending is performed at the boundary of
the mask to reduce the unnaturalness at the boundary between
the moving and static regions.

III. EXPERIMENTS

We conducted experiments using two scenes: Scene A as
shown in Fig. 1 and Scene B with both sky and water
surface regions. We captured omnidirectional images with an
omnidirectional camera (RICOH THETA Z1) and resized them
to 1600 × 800 pixels. The results were compared with those
obtained by the conventional method [2].

Figure 3 shows the resulting omnidirectional frames and
their perspective projection images in a certain direction. From
the results, we can see that the sky region moves in the lower
right direction. The overhead regions of the sky move faster
than the more distant regions, producing natural motion.

Figure 4 shows the results in perspective projection view
by the conventional [2] and proposed methods for Scene
B. In the results of the conventional method shown in the
upper part of Fig. 4, when the direction of the left and right
ends of the omnidirectional image is viewed as a perspective
projection image, the boundary is clearly recognizable and
unnatural because the conventional method generates different
movements at the both ends. On the other hand, the proposed
method uses 3D information to generate motion, resulting in
consistent motion and no obvious boundaries, as shown in
the lower part of the Fig. 4. In this scene, we also confirmed

Fig. 3. Results for Scene A.

Fig. 4. Results and comparison for Scene B.

that the water naturally moved toward the coastline. However,
the waves of the water are not fully represented, resulting in a
sense of discomfort. Therefore, to generate more natural water
surface motion, it is necessary to consider the 3D motion of
waves and the complex motion at the edge of water.

IV. CONCLUSION

In this study, we proposed a method for reproducing motion
of sky and water surface from an omnidirectional still image.
Experiments demonstrated the effectiveness of the proposed
method. Future work includes making the motion of water
more realistic and adding motion to other objects such as trees
to create more realistic video.
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